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Abstract

Human memory for abstract visuals is notably
poorer than for real-world scenes. We investi-
gated whether this discrepancy stems from the
difficulty in verbally labeling abstract content.
We utilize a set of abstract images that vary in
their complexities and human memory perfor-
mance on those images to test our hypothesis.
Using LLMs to generate captions for these ab-
stract images of varying complexity, we found
that caption complexity mirrored visual com-
plexity. We built several simple models to pre-
dict human memory performance on abstract
images and found that a predictive model based
on the generated captions’ semantic content
performed competitively to a model relying
solely on visual features. This study suggests
that our ability to verbalize and name what we
are seeing might indeed underpin our ability to
remember a visual scene.

1 Introduction
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Image 1

Image 2
Figure 1: Representative images from our dataset

It can be easily agreed that image 2 in Figure 1 is
harder to memorize than Image 1. While both these
images are of the same spatial resolution, we can
spot that Image 2 is more complex visually. Pre-
vious work has shown that this visual complexity
causes an image to be harder to memorize (Baner-
jee, 2024). In this work we explore whether the
ability to describe the image also has an effect on
our ability to memorize the image. In other words,
our visual memory might be aided by the ability

to semantically represent the image. We character-
ize what makes an image harder to memorize by
considering the hypothesis: as the images become
more abstract, they become harder to describe and
semantically represent, and that causes them to be
harder to memorize.

So far, the visual memory literature has mostly
considered visual perceptual cues to indicate diffi-
culty in memorization. As a result we have got very
well-established theories that we have a 4-object
limit memory (Luck and Vogel, 1997) that has been
tested on multiple occasions (Ngiam et al., 2023).
However, we can recall a large amount of infor-
mation about natural scenes (Brady et al., 2016),
which seems to go against these well established
hypothesis. This may be the case because natural
objects are remembered semantically, by naming
and describing what we are seeing, during mem-
orizing the scene. We think, when visual stimuli
becomes less natural, and more abstract, our seman-
tic way of memorizing fails and we have to resort
to remembering scenes purely visually which cor-
responds our four object memory limit as found by
psychology literature. We investigate the reason
for the hard limit of memorizing artificial stimuli in
this work which does not seem to exist for natural

scenes. !

2 Background

Intuitively, as when we read a book, we can visu-
alize the scene the words describe indicating that
linguistic stimuli can generate visual imagery. In
this work, we check for the opposite effect, investi-
gating if visual stimuli would cause linguistic repre-
sentations.This approach has been utilized in recent
computational domains to reconstruct images from
fMRI signals (Liu and et al., 2023). However, this
approach has not been used to actually explain hu-
man behavior, to the best of our knowledge. If the
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linguistic representation of the images occurs dur-
ing visual perception, then as the image becomes
more complex, we expect a positive correlation to
the linguistic description of the image. With the
advent of modern frameworks like Transformers
(Vaswani et al., 2017), natural language process-
ing has seen a massive boom since the first Large-
Language Model (LLM) (Devlin et al., 2018). In
this work, we have utilized GPT-4 (Achiam et al.,
2023) to generate descriptions of the images. We
have used these generated descriptions to see if
descriptions get more complex as the images get
more abstract, and if that explains human memory
performance.

Although prior work has found that purely vi-
sual memory exits (Lin et al., 2021), we try to look
at whether this memory is facilitated further by
the addition of semantic labels. Semantic labels
and representations significantly enhance visual
memory by providing organizational frameworks
that anchor visual stimuli to meaning. In cogni-
tive psychology, the dual-coding theory posits that
information encoded both visually and verbally is
more easily remembered because the two repre-
sentations create redundant pathways for retrieval
(Paivio, 1991). Semantic labels enable individuals
to form associative links between visual elements
and their meanings, transforming raw perceptual
input into structured, conceptually rich representa-
tions. For example, studies on memory for scenes
have shown that the presence of semantic informa-
tion, such as recognizable objects and contextual re-
lationships, boosts memory retention by engaging
linguistic and conceptual processing systems along-
side visual pathways (Brady et al., 2008). This
interplay between visual and semantic encoding
allows for efficient chunking of information, reduc-
ing cognitive load and enhancing recall accuracy.

Neuroscience studies further corroborate the role
of semantic representations in visual memory by
highlighting the involvement of brain regions like
the medial temporal lobe and the prefrontal cor-
tex, which are associated with integrating sensory
input and conceptual knowledge. Semantic associ-
ations activate higher-order brain networks that en-
hance the distinctiveness of visual stimuli, making
them more memorable. Binder and Desai (2011)
showed that semantic memory relies on distributed
neural systems, with hubs like the angular gyrus
contributing to the processing of conceptual infor-
mation (Binder and Desai, 2011). This is crucial for
understanding and remembering complex scenes.

By providing a cognitive scaffold, semantic labels
and representations enable humans to organize and
retrieve visual experiences with remarkable effi-
ciency, particularly in naturalistic environments
rich in recognizable features and meaningful con-
text.

Thus it makes sense to study how semantic rep-
resentation and describability of images may aid
visual memory. Advancements in image captioning
have shown significant promise in enhancing our
understanding of visual-semantic interactions. For
instance, FUSECAP utilizes vision-language pre-
training and "vision experts" (e.g., object detectors
and OCR systems) to generate enriched captions
by integrating detailed visual features into existing
captions (Rotstein et al., 2023). These enriched cap-
tions align better with image content and improve
tasks such as image-to-text retrieval, showcasing
the potential of dataset-focused improvements for
enhancing caption quality.

Another approach, CapText, avoids direct im-
age processing by generating captions from textual
descriptions and context alone, leveraging large lan-
guage models (LLMs) (Ghosh and Anupam, 2023).
This computationally efficient method aligns well
with the challenges of captioning abstract images,
where context often plays a more significant role
than visual features. However, these methods have
not been explicitly tailored to abstract stimuli, leav-
ing a gap in understanding their applicability to
non-realistic imagery.

Furthermore, cognitive studies on LLMs reveal
their emergent memory-like traits, such as primacy
and recency effects, which mirror human memory
processes (Janik, 2024). These traits suggest that
LLMs could serve as tools to model human cog-
nitive behaviors, particularly in scenarios where
linguistic representations intersect with visual per-
ception.

Despite these advancements, challenges persist.
Research highlights the failure of existing caption-
ing systems to produce meaningful descriptions for
abstract images, often due to a reliance on literal
interpretations (Tran et al., 2022). Testing frame-
works like MetalC further expose the limitations
of current systems in handling synthetic visuals,
emphasizing the need for improved robustness in
abstract contexts (Authors, 2022).

This work aims to bridge the gap between com-
putational and cognitive approaches by investigat-
ing the role of semantic complexity in image cap-
tioning and its relationship with human memory



Homework 1

CSCI 5541 NLP S24

performance. By leveraging GPT-4 to generate cap-
tions for abstract images, we seek to understand
how the linguistic complexity of captions correlates
with memory challenges for abstract stimuli. This
study contributes to both the computational model-
ing of memory processes and the development of
more robust captioning systems for abstract visual
data. These LLLM generated captions for images
can be analyzed for their descriptive complexity,
and compared to the images’ visual complexity.

The complexity of a sentence can be calculated
using various techniques, each focusing on differ-
ent aspects of the sentence. Perplexity measures
how well a statistical model predicts a sample. In
the context of sentences, it’s used to gauge the
predictability of words in a sentence. A higher per-
plexity indicates a more complex sentence because
it means the model finds it harder to predict the
next word (Jelinek et al., 1977).

Syntactic Complexity (Lu and Ai, 2015) mea-
sures the complexity of sentence structure, includ-
ing the number of clauses, phrases, and grammat-
ical dependencies. Metrics like dependency dis-
tance (Liu et al., 2017) are commonly used to cal-
culate this. Type-Token ratios can be used to calcu-
late the diversity of vocabulary used in the captions
(Kettunen, 2014).

Concreteness is another measure used to analyze
sentence complexity and highly pertinent to our
work (Begg and Paivio, 1969). Concreteness refers
to the degree to which a word or concept is tangi-
ble and easily visualized. In NLP, concreteness is
often used to assess the complexity of sentences
by evaluating the abstractness of the vocabulary
used. More abstract words typically make sen-
tences harder to understand, while concrete words
are easier to visualize and comprehend. Neuro-
science and psychological works have shown that
sentence concreteness has shown to capture ways
people speak about concepts (Snefjella and Kuper-
man, 2015), and also individual differences among
people’s behaviors (Botch and Finn, 2024). Several
methods of measuring concreteness has been pro-
posed (Ljubesic et al., 2018), (Yanuka et al., 2024).
These methods, however, use complex models to
calculate the concreteness. Here, we have used
word synsets to build a simple metric for concrete-
ness.

The potential impact of this work is substantial.
By demonstrating a correlation between semantic
complexity and memory performance, this research
could guide the development of more effective ed-

ucational tools, where abstract visual content is
paired with semantically enriched descriptions. Ad-
ditionally, in practical applications like assistive
technologies or augmented reality systems, better
understanding of how humans interpret abstract
images can lead to improved user interfaces and
interactions. Finally, this study could pave the way
for future innovations in multimodal Al systems
that emulate human-like memory for complex vi-
sual stimuli.

3 Methodology

We employed a multi-step approach to investigate
the influence of semantic complexity and concrete-
ness in image captions on human memory perfor-
mance.

Caption Generation

Image captions were generated using the gpt-4o-
mini language model. Captions were designed
through prompt engineering to ensure relevance
and detail, focusing on spatial relationships and
object shapes (see Figure 2 (Prompt Selection)).
Multiple such prompts were used to generate the
captions. These prompts were used to generate
captions for a single block of abstract images.

These captions generated from the different
prompts were compared to whittle down and se-
lect the final prompt. We evaluated captions us-
ing both automatic (ROUGE-1 scores) and human
(normalized Likert scale ratings) metrics. These rat-
ings showed a clear preference for our most tuned
prompt (see Figure 3).

The final prompt that we selected and used to
generate captions for the entire dataset was:

"Please generate descriptions of the images and
talk about the spatial relationships and the object
shapes of all the colors in the image in detail
without using poetic or emotional language. Write
a maximum of 100 words."

Semantic Complexity

Once we had all the captions for the abstract im-
ages, our next step was to evaluate the semantic
complexity of the captions for those images (See
Figure 2 (Model Building section)). Semantic com-
plexity was quantified using perplexity (Jelinek
et al.,, 1977) and semantic concreteness(Begg and
Paivio, 1969), which were calculated from a pre-
trained BERT model (bert-base-uncased) and using
Wordnet(Fellbaum, 1998), respectively. Perplex-
ity was computed by tokenizing captions, passing
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Figure 2: Methodology
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Figure 3: Human and ROGUE-1 evaluations for cap-
tions generated different prompts for 1 block of abstract
images.

them through the model, and taking the exponential
of the cross-entropy loss.

Concreteness Calculation

To assess concreteness, tokens were mapped to
WordNet synsets, and synset depths were used to
compute concreteness scores. Caption-level scores
were averaged across all tokens. While other meth-
ods to calculate concreteness exist, we went ahead
with this as it utilizes the well-established WordNet
library.

Feature Selection

We computed Pearson’s correlation coefficients
between semantic complexity measures (perplex-
ity, concreteness, and memorability) and distortion
metrics, a proxy for human memory performance.

Figure 4: Different features extracted from captions
are used as predictors for human memory performance.
Here we check whether these semantic features are cor-
related to visual complexities of the images.

Regression Models

Linear regression models were trained using se-
mantic complexity scores (perplexity, concreteness,
caption length) as features (See Figure 4). A linear
combination of perplexity and concreteness were
used to create a semantic memorability model. This
model aims to predict human memory performance
on the visual task purely based on linguistic com-
plexity and descriptive specificity. All models mod-
els were evaluated using K-fold cross-validation,
by treating each block of images as a fold (see
Dataset section for details), to ensure independence
between training and testing sets.

4 Challenges

One of the primary challenges was that exist-
ing large language models (LLMs) haven’t been
trained extensively on abstract images. These mod-
els generally excel at interpreting and describing
real-world, concrete scenes, objects, and events be-
cause they have been exposed to vast amounts of
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such data. However abstract images, which are of-
ten used as controlled stimuli for scientific research
and lack objects encountered in the everyday world,
are underrepresented in typical training datasets.

As a result, when tasked with generating cap-
tions for abstract images, these models tend to fall
short, producing captions that fail to describe the
image accurately. The initial generated captions
defaulted to a naturalistic interpretation of the ab-
stract images. For instance, Figure 1’s blue and
white image was captioned as "glacier meeting the
sea" which is not an expected response from a hu-
man. This gap highlights a significant limitation
in current LLM capabilities and underscores the
need for more diverse and comprehensive train-
ing datasets that include a variety of abstract and
non-natural stimuli.

To mitigate this issue, we had to employ thor-
ough prompt engineering. This involved crafting
prompts that would guide the model towards re-
sponding how human may have responded while
performing a scientific task. As a result, we had to
manually test and validate multiple prompts. This
labor-intensive process was reminiscent of the early
days of creating image datasets, where human an-
notators painstakingly labeled each image. This
step was essential not only for quality control but
also for refining our approach. In the end, this
step enabled us to successfully devise a caption-
generation technique for abstract images.

We encountered other challenges as well such
as having limited measures of analyzing the com-
plexity of sentences. Readability metrics such as
Flesch Reading Ease (Farr et al., 1951) and Flesch-
Kincaid scores (Flesch, 2007) were tested but ex-
cluded due to poor predictive performance. Other
limitations can be thought of as our dataset being
limited to 27 images and participants being limited
to 6 participants. While 27 images is standard for a
psychological task such as ours, we can look into
getting memory performances of more participants
in the future.

5 Results

Recent work has shown that as image complexity
increases, human memory performance declines
for abstract images (See Figure 5).

A UMAP (Uniform Manifold Approximation
and Projection) (Mclnnes et al., 2018) of the cap-
tions of select group of images was used to cluster
captions generated for abstract images by their cap-

Subject error rate vs increasing complexity
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Figure 5: Human memory performance shows increas-
ing errors with increasing image complexity. Image and

caption adapted with permission from author(Banerjee,
2024).

tion complexity. The UMAP demonstrates clear
separation among captions based on their associ-
ated image complexities (See Figure 6). This sep-
aration indicates that the captions, reflect under-
lying patterns of image complexity that humans
intuitively perceive.

L dnoig

zdnoig

¢ dnoig

Figure 6: UMAP of captions for selected images show
clustering by image complexities.The image groups
were chosen such that all the images in a group had the
same visual complexity, but the groups were of different
complexities. The group visual complexities: 0.0003,
0.0010, 0.0028 (for more details on the images see 8)

We also compared the performance of models
predicting memory performance using different
semantic complexity metrics (See Figure 7). A
K-Fold cross-validation approach was employed
to rigorously compare a semantic memorability
model (based on a linear combination of perplexity
and concreteness) with a purely visual complexity
model. Remarkably, the semantic model proved
competitive with the visual complexity model, un-
derscoring the importance of semantic factors in
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determining memorability.
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Figure 7: A K-Fold cross-validation approach to com-
pare models shows that semantic memorability model is
competitive with a visual complexity regression model.
This gives evidence to the hypotheis that images may
be represented semantically in addition to being repre-
sented visually.

6 Discussion

Overall, the results strongly support the idea that se-
mantic descriptions aid visual memory. They reveal
a robust connection between image complexity, se-
mantic representation, and memory performance,
shedding light on why natural scenes are easier to
remember than abstract ones. The implications of
this study extend to areas such as Al-driven image
captioning, memory training, and understanding
the cognitive basis of visual and semantic integra-
tion.

In this study, we quantitatively analyzed hu-
man visual memory performance through semantic
means by leveraging metrics such as perplexity and
concreteness. These metrics serve as proxies for
the difficulty of generating semantic descriptions,
revealing that abstract images with higher visual
complexity lack clear semantic cues, leading to in-
creased memory recall errors. This supports the
hypothesis that humans rely on both visual and
semantic representations to encode and retrieve
memories, with the absence of semantic anchors in
abstract images impairing memory performance.

Our UMAP analysis demonstrated that captions
for less complex images cluster tightly, reflecting
straightforward semantic structures, while captions
for more complex images are dispersed, indicating
greater variability and difficulty in interpretation.
This suggests that semantic properties are closely
tied to visual complexity, offering new insights
into how image semantics influence cognitive pro-
cesses.

By combining semantic and visual complexity
metrics, we achieved more accurate predictions of
memory performance. This underscores the dual
role of semantic and visual encoding in memory
retention and highlights the importance of integrat-
ing these perspectives for a holistic understanding
of human cognition. Our work serves as a proof of
concept, illustrating that harder-to-describe images
are also harder to memorize, while bridging two
fields to explore the underexamined relationship be-
tween human memory and semantic representation.
Furthermore, our approach demonstrates the utility
of leveraging LLMs for generating captions for ab-
stract images, opening avenues for future research
and controlled stimuli development.

‘We believe, that this work will interest a wide
range of audiences, including cognitive psycholo-
gists, computational neuroscientists, and artificial
intelligence researchers, particularly those working
at the intersection of human cognition and machine
learning. Cognitive psychologists can utilize the
findings to deepen their understanding of how hu-
mans process and recall abstract visual information.
Computational neuroscientists might find value in
the methodology, especially the integration of se-
mantic and linguistic complexity to model memory.
For Al researchers, this study offers insights into
how large language models can simulate human
cognitive processes, potentially improving systems
designed for abstract image captioning.

7 Additional Points

Replicability

Whilst our results are tied to the dataset that we
used, our methodology is designed to be highly
replicable. We used publicly available tools, such
as GPT-4 and pre-trained BERT models, ensuring
that others can recreate our process. Additionally,
our prompts for caption generation are explicitly
detailed, allowing for straightforward replication.
Sharing our annotated dataset and codebase will
facilitate broader use and validation of our findings.
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Figure 8: One block of the stimuli that participants
saw during the memory task. It consists of 3x3 images,
with increasing number of objects as we go down, and
increasing fragmentation of objects as we go across a
row. Numbers over the arrows indicate the visual com-
plexites of the images. The visual complexity of each
images, is a unitless metric derived from structural and
geometric properties of the image. Orange arrows sig-
nify images with same visual complexities. Image and
caption adapted with permission from author(Banerjee,

2024).

We used a recently created custom dataset for a
mental imagery and human memory task (Baner-
jee, 2024). The dataset consists of 3 blocks of
non-natural images with varying number of ob-
jects, fragmentation patterns, and complexities,
with each block having 9 images (See Figure 8).
This dataset containing the abstract images was
paired with with GPT-4-generated captions for this
task. The combination of abstract images and ro-
bust captions provides a unique resource for future
research. The dataset may prompt researchers to
explore novel approaches to abstract image caption-
ing, such as developing models specifically tailored
for non-naturalistic visual stimuli.

Ethics

We ensure that our prompts are designed to avoid
bias or emotionally charged language.
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